<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD>
<META content="text/html; charset=UTF-8" http-equiv=Content-Type>
<META name=GENERATOR content="MSHTML 9.00.8112.16440"></HEAD>
<BODY style="FONT-FAMILY: Arial; COLOR: #000000; FONT-SIZE: 10pt" id=role_body 
bottomMargin=7 leftMargin=7 rightMargin=7 topMargin=7><FONT id=role_document 
color=#000000 size=2 face=Arial>
<DIV>In a message dated 2/16/2012 5:24:33 P.M. Pacific Standard Time, 
t.schlosser@msaj.com writes:</DIV>
<BLOCKQUOTE 
style="BORDER-LEFT: blue 2px solid; PADDING-LEFT: 5px; MARGIN-LEFT: 5px"><FONT 
  style="BACKGROUND-COLOR: transparent" color=#000000 size=4 face=Arial><FONT 
  size=+1>The Biological Assessment on the Preferred Action of Interior's EIS on 
  Klamath points out that total chinook returns to the river will decline 
  substantially after PacifiCorp stops replacing the IGH output. See e.g., pages 
  214-15 of <A 
  title="http://klamathrestoration.gov/sites/klamathrestoration.gov/files/Klamath BA_ Final _10-03-11.pdf" 
  href="http://klamathrestoration.gov/sites/klamathrestoration.gov/files/Klamath%20BA_%20Final%20_10-03-11.pdf">this.</A> 
  <BR><BR>PacifiCorp is obligated to replace IGH chinook output for 8 years 
  after removal of IGD but no party has agreed to fund or provide replacement 
  production after that.<BR><BR><A class=moz-txt-link-freetext 
  title=http://www.heraldandnews.com/news/article_cdf4af6e-586b-11e1-8b2e-0019bb2963f4.html 
  href="http://www.heraldandnews.com/news/article_cdf4af6e-586b-11e1-8b2e-0019bb2963f4.html">http://www.heraldandnews.com/news/article_cdf4af6e-586b-11e1-8b2e-0019bb2963f4.html</A></FONT></FONT></BLOCKQUOTE>
<DIV><STRONG><FONT size=3>Colleagues...</FONT></STRONG></DIV>
<DIV><STRONG><FONT size=3></FONT></STRONG> </DIV>
<DIV><STRONG><FONT size=3>The Biological Assessment appears to be incorrect on 
this point.  The projected increase in chinook runs size after dam removal 
and KBRA benefits is not "hatchery dependent" because it was assumed that, after 
stabilizing reintroduced populations, that Iron Gate Hatchery would close.  
Here is my reply to Tom Schlosser noting this problem from another 
forum:</FONT></STRONG></DIV>
<DIV><STRONG><FONT size=3></FONT></STRONG> </DIV>
<DIV>
<DIV>                                                  
*******</DIV>
<DIV> </DIV>
<DIV>Interesting, but [your assumption that fish numbers would decline after dam 
removal] is based on some false reasoning. </DIV>
<DIV> </DIV>
<DIV>You should be aware that the DEIS Salmon Production Model was run <U>with 
the assumption of NO Iron Gate Hatchery production at all</U>, to be 
conservative... and still comes up with the 83% production increase you cite, at 
least for fall chinook. The note [above] is not in fact based on that fact, 
so you are assuming a <U>double subtraction</U> that cannot mathematically be 
made. </DIV>
<DIV> </DIV>
<DIV></DIV>
<DIV>In addition, hatchery fish have notoriously lower survival rates in the 
natural environment than wild fish as they have become "hatchery dependent" even 
on the genetic level. There have been (literally) hundreds of studies verifying 
this phenomenon, and the Klamath Iron Gate Hatchery is no exception. Genetic 
drift to make a fish more genetically fitted to hatchery life, but less fitted 
to life in the wild, has been demonstrated to occur (at least with steelhead, 
but no reason to think it is not broadly applicable to their cousins) within 
just one or two generations!</DIV>
<DIV> </DIV>
<DIV></DIV>
<DIV>In addition, hatchery fish are typically released at sizes larger than 
native wild fish (since they are well fed their whole lives in the tanks), and 
so <U>predate</U> on the wild smolt stocks -- hence, any introduced hatchery 
stocks can in fact REDUCE productivity of the wild stocks, resulting in a 
partial cancellation of any additional hatchery benefits in terms of sheer 
escapement numbers. In some studies, such as in the Alsea River, the more 
hatchery fish were introduced the LESS the ultimate adult escapement from that 
brood year -- in other words, there was a <U>negative correlation</U>! This is 
apparently because the larger hatchery juveniles simply ate up many of the wild 
juveniles in the short-term, but themselves had much lower overall survival 
rates over their entire lifecycle in the long-term -- so more of them just flat 
out died in the ocean and from larger predators than would have occurred had 
there been no hatchery "supplementation" to begin with.</DIV>
<DIV> </DIV>
<DIV></DIV>
<DIV>You can check with the authors of the Chinook Production Model for 
verification of how the modeling was done, i.e., without assuming any hatchery 
production as a conservative assumption. As to the other flaws in assuming that 
hatchery supplementation can replace a healthy wild stock with impunity, there 
are literally hundreds of such studies in the literature that any salmon 
biologist would help you locate, though it would take some legwork.</DIV>
<DIV> </DIV>
<DIV></DIV>
<DIV>As is usually the case with biology, its all a LOT more complex than at 
first cut. But by and large, your juxtaposition of the two statements below and 
your conclusion from that that the end result of dam removal will be FEWER 
salmon in the river because of the loss of IGH production is simply not true so 
far as I am aware of the science and modeling done. </DIV>
<DIV> </DIV>
<DIV></DIV>
<DIV></DIV>
<DIV>PS: The adult hatchery fish returns to the Iron Gate Hatchery in 2009, I am 
told, was 12,263 adult chinook. This is far below the 53,400 number as estimated 
IGH returns on which the note below was based. If, then, the dam removal and 
re-established above-dams fall chinook runs had instead been in place that year 
(for comparison), an estimated 41,000 would have been coming in with an IGH loss 
of only 12,263 -- a net GAIN of over 28,700 adult spawners! This is of course 
also simplistically assuming a one-to-one replacement, without any negative 
hatchery-wild interactions. So you see, it all depends on how and what you 
count, what your baselines are, and what data-years you are averaging from -- 
and what hatchery-wild interactions you count and how you count them, <EM>or 
simply ignore.</EM> </DIV>
<DIV><EM></EM> </DIV>
<DIV></DIV>
<DIV>Hatchery programs also are expensive (and subject increasing to state 
budget cuts) and sometimes just flat out fail, from disease or human error. So 
relying on hatchery production always carries its own risks. These too have to 
be considered.</DIV>
<DIV> </DIV>
<DIV></DIV>
<DIV>-- Glen Spain</DIV>
<DIV> </DIV>
<DIV><STRONG><FONT size=3>And in a later email exchange in which Tom asked for 
some citations to the fact that the Chinook Model was run without reference to 
any hatchery impacts, I responded as follows:</FONT></STRONG></DIV>
<DIV><STRONG><FONT size=3></FONT></STRONG> </DIV>
<DIV><FONT size=3><FONT size=2> </FONT> 
<DIV><FONT size=2>In a message dated 2/9/2012 9:05:00 A.M. Pacific Standard 
Time, t.schlosser@msaj.com writes:</FONT></DIV>
<BLOCKQUOTE 
style="BORDER-LEFT: blue 2px solid; PADDING-LEFT: 5px; MARGIN-LEFT: 5px"><FONT 
  style="BACKGROUND-COLOR: transparent" color=#000000 size=2 face=Arial>I agree 
  with many of your generalizations about hatcheries. Can you point me to where 
  it is made clear that the DEIS modeling assumes no IGH 
production.</FONT></BLOCKQUOTE>
<DIV><FONT style="BACKGROUND-COLOR: transparent" color=#000000 size=2 
face=Arial>Tom... Surely.... One can start here:</FONT></DIV>
<DIV><FONT size=2></FONT> </DIV>
<DIV><FONT style="BACKGROUND-COLOR: transparent" color=#000000 size=2 
face=Arial></FONT></DIV>
<DIV><FONT style="BACKGROUND-COLOR: transparent" color=#000000 size=2 
face=Arial></FONT></DIV>
<DIV><FONT style="BACKGROUND-COLOR: transparent" color=#000000 size=2 
face=Arial>"Anticipated removal of the dams, combined with restoration of 
aquatic habitats as anticipated in the KBRA, is predicted to increase the median 
annual production of adult Chinook salmon, <U>in the absence of hatcheries,</U> 
by an average of 83 percent for the years after dam removal (see Figure 4.1-25). 
The Chinook salmon ocean commercial and sport harvests are forecasted to 
increase by an average of 50 percent, the inriver tribal harvest would increase 
by an average of 59 percent, and the in-river recreational fishery would 
increase by an average of 9 percent in those years following dam removal (2021 
to 2061)." SDOR pg. 86 of text (emphasis on key phrase added)</FONT></DIV>
<DIV><FONT size=2></FONT> </DIV>
<DIV><FONT style="BACKGROUND-COLOR: transparent" color=#000000 size=2 
face=Arial></FONT></DIV>
<DIV><FONT size=2></FONT></DIV>
<DIV><FONT size=2></FONT></DIV>
<DIV><FONT size=2>Then looking to the Source Document, which is:</FONT></DIV>
<DIV><FONT size=2></FONT> </DIV>
<DIV><FONT size=2></FONT></DIV>
<DIV><EM><FONT size=2>Forecasting the response of Klamath Basin Chinook 
populations to<BR>dam removal and restoration of anadromy versus no 
action<BR>---- Noble Hendrix (2011)</FONT></EM></DIV>
<DIV><EM><FONT size=2></FONT></EM> </DIV>
<DIV><EM><FONT size=2></FONT></EM></DIV>
<DIV><FONT size=2>"ABSTRACT: Two alternative actions are being evaluated in the 
Klamath Basin: 1) a No Action Alternative (NAA) and 2) removal of four mainstem 
dams (Iron Gate, Copco I, Copco II, and J.C. Boyle) and initiation of habitat 
restoration in the Klamath Basin under a Dam Removal Alternative (DRA). The 
decision process regarding which action to implement requires annual forecasts 
of abundance with uncertainty under each of the two alternatives from 2012 to 
2061. I forecasted escapement for both alternatives by constructing a life-cycle 
model (Evaluation of Dam Removal and Restoration of Anadromy, EDRRA) composed 
of: 1) a stock recruitment relationship between spawners and age 3 in the ocean, 
which is when they are vulnerable to the fishery, and 2) a fishery model that 
calculates harvest, maturation, and escapement. To develop stage 1 of the model 
under NAA, I estimated the historical stock recruitment relationship in the 
Klamath River below Iron Gate Dam in a Bayesian framework. To develop stage 1 of 
the model under DRA, I used the predictive spawner recruitment relationships in 
Liermann et al. (2010) to forecast recruitment to age 3 from tributaries to 
Upper Klamath Lake, which is the site of active reintroduction of anadromy. I 
also modified the spawner recruit relationship under DRA to include additional 
spawning capacity between Iron Gate Dam and Keno Dam. In order to facilitate the 
comparison of the two alternatives, I used paired Monte Carlo simulations to 
forecast the levels of escapement and harvest under NAA and DRA. Median 
escapements and harvest were higher in DRA relative to NAA with a high degree of 
overlap in 95% confidence intervals due to uncertainty in stock-recruitment 
dynamics. Still, there was a 0.75 probability of higher annual escapement and a 
0.7 probability of higher annual harvest by performing DRA relative to NAA, 
despite uncertainty in the abundance forecasts. The median increase in 
escapement in the absence of fishing was 81.4% (95% symmetric probability 
interval [95%CrI]: -59.9%, 881.4%), the median increase in ocean harvest was 
46.5% (95%CrI: -68.7, 1495.2%), and the median increase in tribal harvest was 
54.8% (95%CrI: -71.0%, 1841.0%) by performing DRA relative to NAA <U>(estimates 
provided for model runs after 2033 when portion of the population in the 
tributaries to UKL are assumed to be established and Iron Gate Hatchery 
production has ceased)."</U> (emphasis added)</FONT></DIV>
<DIV><EM><FONT size=2></FONT></EM> </DIV>
<DIV><FONT size=2></FONT></DIV>
<DIV><FONT size=2></FONT></DIV>
<DIV><FONT size=2>And to get even deeper into the methodology of the Chinook 
abundance model:</FONT></DIV>
<DIV><FONT size=2></FONT> </DIV>
<DIV><FONT size=2></FONT></DIV>
<DIV><FONT size=2></FONT></DIV>
<DIV><FONT size=2>"I also calculated the percentage increase in abundance for 
each paired iteration as (DRA – NAA)/NAA * 100%, which provided a quantitative 
estimate of the difference in abundance. There were three periods that could 
have different relative levels of abundance under DRA versus NAA: the period 
between model initiation and dam removal (2012- 2020); the period after dam 
removal but with active reintroduction in the tributaries to UKL (2021-2032);<U> 
and the final period when the population in the tributaries to UKL are assumed 
to be established and Iron Gate Hatchery production has ceased (2032-2061)</U>. 
(Hendrix, (2011), <FONT style="BACKGROUND-COLOR: transparent" color=#000000 
face=Arial>pg. 17 -- emphasis added)</FONT></FONT></DIV>
<DIV><FONT style="BACKGROUND-COLOR: transparent" color=#000000 
face=Arial><EM><FONT size=2></FONT></EM> </DIV>
<DIV><FONT size=2></FONT></DIV>
<DIV><FONT size=2></FONT></DIV>
<DIV><FONT size=3><FONT size=2>I will spare you all the equations.... I 
<U>can</U> digest Bayesian functions but they <EM>do</EM> give me indigestion 
unless I follow them with a quick glass of wine (grinning). But from the above 
it is pretty clear that the Chinook production estimate modeling for the DRA 
scenario was all done without reference to any IGH fish as a potentially 
confusing factor in the final time frames, i.e., after dam removal.</FONT></DIV>
<DIV><BR>
<DIV><FONT size=2></FONT></DIV>
<DIV><FONT lang=0 face=Arial FAMILY="SANSSERIF" PTSIZE="10"><FONT 
size=2>=============================================<BR>Glen H. Spain, NW 
Regional Director<BR>Pacific Coast Federation of Fishermen's Associations 
(PCFFA)<BR>PO Box 11170, Eugene, OR 97440-3370<BR>O:(541)689-2000 -- 
Fax:(541)689-2500<BR>Email: fish1ifr@aol.com<BR>Home Page: </FONT><A 
title=http://www.pcffa.org/ href="http://www.pcffa.org/"><FONT 
size=2>www.pcffa.org</FONT></A><FONT size=2> 
<BR><BR></FONT></FONT></DIV></DIV></FONT></FONT></FONT></DIV>
<DIV><STRONG><FONT size=3></FONT></STRONG> </DIV>
<DIV><STRONG><FONT size=3></FONT></STRONG> </DIV>
<DIV><STRONG><FONT size=3></FONT></STRONG> </DIV>
<DIV><STRONG><FONT 
size=3></FONT></STRONG> </DIV></DIV></FONT></BODY></HTML>